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Unusual solutions to the Yang-Baxter equation 

Ladislav Hlavat9 
Institute of Physics, Czechoslovak Academy of Sciences, Na Slovance 2, 180 40 Prague 8, 
Czechoslovakia 

Received 5 August 1986 

Abstract. The complete list of non-symmetric eight-vertex constant solutions to the Yang- 
Baxter equation is obtained and new solutions dependent on more than one variable are 
presented. Corresponding spin Hamiltonians are derived by Sutherland's method. 

1. Introduction 

The Yang-Baxter equation ( YBE) 

R;,ljkzz(~, U)R'&(U, w)Rk; i , (u ,  w )  = R:;>(u, w)R,k,l&u, w)R'k' , ' i , (~,  U )  (1.1) 

where j , ,  j,, j,, k , ,  k , ,  k 3 ,  I , ,  I,, I ,  = 1 , 2 , .  . . , N, as well as its classical counterpart 
emerge in many branches of theoretical physics (for a review see, e.g., [ l ]  and the 
most recent application in [2]). 

Up to now many solutions of (1.1) have been found (see [3-71 and  references 
therein). Most of them are functions of only one variable R (  U, U )  = R (  U - U )  and they 
satisfy 

R $ ( U = o ) = P $ : = S : S f ,  (1.2) 

so that one can ask if (1.2) does not hold for all the solutions of (1.1). The answer is 
negative and  solutions that do not satisfy (1.2) are presented in this paper. We shall 
investigate the simplest case N = 2  and assume that the matrices R have the non- 
symmetric eight-vertex form 

[ a  0 0 d\ 

(1.3) 

Solutions of the form (1.3) where the entries depend only on the difference U - U 
were classified in [6] but, as it will be seen below, not completely. 

In this paper we admit the entries being genuine functions of two variables, i.e. 
not necessarily of their difference. Let us recall that the YBE can be considered as a 
consequence of the 'commutation relation' [ 11 

&U, u ) [ L ( U ) o L ( U ) l =  [ L ( u ) O L ( u ) l & u ,  U )  (1.4) 
where the matrix I? is simply related to R and there is no a priori reason that R be a 
function of the difference U - U. 
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Moreover, we shall assume that U and U can be multicomponent objects, i.e. U, 

An example of such a solution is the free-fermion one [8, 131 where 
U E C" in general. 

a(u ,  U )  = 1 - ulu le ( t )  

i(u, U )  = e ( ? )  - ulul  

b(u,  U )  = u1 - ule( t )  

&U, U )  = u1 - u , e ( t )  

c( U, U )  = ;(U, U )  = (i /2)(  1 - U;)( 1 - U:)( 1 - e( t))/sn( t/2, k )  

d ( u ,  U ) =  d ( u ,  u)=(k/2) (1  -u;)( l  - v : ) ( l + e ( t ) )  sn(t/2, k )  

where 

t = U 2  - U 2  e (  t )  = cn( t, k )  + i sn( t, k )  

and sn, cn are Jacobi's elliptic functions. 
Another example is the non-symmetric six-vertex solution 

a(u,  u)=u1u; 'sin(u2-u2+k) 

i(u, U ) = U ; ~ U ,  sin(u2-u2+k) 

b( u, U )  = u;'u; '  sin(u, - u2) 

b(u, U)= ulul  sin(u2-u2) 

c(  U, U )  = E( U, U )  = sin k 

.. 

- 
d ( u ,  U )  = d ( u ,  U )  = 0 

(1.7) 

that corresponds to the ferroelectrics in an electric field or X X Z  spin model in a 
magnetic field [9]. 

Solutions presented in this paper are classified from the point of view of their 
values in U = U. 

2. Constant solutions 

The first problem we are going to solve is: which constant matrices can stand on the 
right-hand side of (1.2)? 

They must satisfy (1.1) with U = U = w so that we must look for solutions of the 
'constant YBE' 

(2.1) 

The problem of finding all solutions of (2.1) for arbitrary N was posed in [3] and, 
to the best of my knowledge, has not yet been solved. A construction of the so-called 
quasiclassical constant solutions to (2.1), provided solutions of the classical Y B E  are 
given, was presented in [lo]. 

Rki k2R I I  k 3  R = Rk2k3Rklf3 R11/2 
i l l 2  k l j 3  k2k3 h J 3  11k3 k1k2' 

The solution space of equation (2.1) is invariant under the transformations 

R = k ( T @ T ) R ( T @ T ) - I  (2.2) 
where T E  GL(2, C ) ,  k is a constant ZO. We can exploit this symmetry with T 
(anti)diagonal to get d = d or d'=  0 and then insert (1.3) into (2.1). 
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We obtain a system of quadratic equations for the entries of (1.3) (cf [ 6 ] ) .  The 
system can be easily solved and the following list of solutions results: 

1 0 0 0  

Ro=(. 0 1 0 0  '1 
0 0 0 1  

0 

1 0  0 0 

0 0  

R 6 = [ :  0 1-r t  1 t 

1 0 0 0  

0 -rt &=Io o o s o  '1 
O O O t  

0 

1 0 0 0  

0 
1 - t  

0 0 0  

1 0 0 0  

R,=[' O O E O  E '1 
&=lo O t O O  '1 1 O O E '  

0 0 0 1  

1 0 0 0  

where E ~ ,  E" = 1 and r, s, t are arbitrary constants different from zero. By their 
construction the matrices form the complete list of solutions to (2.1) of the form (1.3) 
u p  to the transformation (2.2). (Only regular matrices are considered.) 

Note that the matrices R3-R7 have non-symmetric antidiagonals. Similar (but 
non-constant) solutions, the so-called seven-vertex models, were presented in [6]. Here 
we can see that there are also five-vertex and  non-symmetric six-vertex solutions. Their 
non-constant versions will be constructed below. 

3. Non-constant solutions 

Solutions mentioned in the introduction as well as those presented in [ 6 ]  satisfy 
R (  U, U )  = Ro = P. Here we shall concentrate on solutions satisfying 

R ( u ,  U )  = Ri i E { 1 , 2 , .  . . , 9 } .  (3.1) 

We can exploit several facts: first, if the solution satisfies (3.1) then the equation 
(1.1) with U = U provides a system of purely algebraic (i.e. not functional-algebraic) 
equations that further restricts the ansatz (1.3). (It is an  identity for R ( u ,  U )  = R o e )  

Second, the solution space of equation (1.1) is invariant under the transformations 

(3.2) R'(u ,  U )  = k ( u ,  u ) [ T ( u ) O  T ( u ) l R ( u ,  u)[T(u)OT(u)]- '  
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where the arbitrary functions k ( u ,  U) and T ( u )  are scalar and GL(2, C)-valued, 
respectively. Another useful symmetry of (1.1) is 

(3.3) 

where P is given by (1.2). These symmetries can be exploited to achieve { d ( u ,  U) = 
d ( u ,  U )  or d ( u ,  U )  = 0} and  { c ( u ,  U) = c'(u, U) or ;(U, U) = 0} so that the solutions 
can be classified according to the number of zeros on the antidiagonal of (1.3). 

R'(u ,  U) = PR(u,  u ) P  

Finally, there are trivial solutions of (1.1) of the form 

R ( u ,  0 )  = f ( u ,  U)[a ,@(+rl+g(u,  U)[(T,@(T,l (no sums) (3.4) 

where i, j E { 1,2,3,4}, (T, are Pauli matrices and unit matrix. Another trivial solution 
is an  arbitrary diagonal matrix. 

There are only trivial solutions of (1.1) satisfying (3.1) for i = 8, 9 and one can 
show that there is no non-constant (up  to a scalar factor) solution satisfying R (  U, U )  = 

R7. 

The solutions satisfying (3.1) for i = 1, 2, , , . , 6  up  to the transformation (2.2) are 
displayed in table 1. 

Table 1. Entries of the solutions R (  U, U )  satisfying (3.1). D2 = i (  1 -U')( 1 - v 2 ) / 2 ,  k = 
constant, E' = 1. 

a b 6 

I U /  U U / U  U f L :  - u / u  
I1 i - u v  1 - iuc  u - i u  U - i c  
111 1 -U E E U  

V U /  U U /  U ( W - '  kuo 
I V  1 -U E U  E 

VI U I I V 2  V 2 / U I  ( U ,  u21-I --U1u2 

C d 2 

I 1 1 I 1 

I 1  D D D D 
I l l  1--L' 0 l + u  0 
IV 0 1 - U  l + u  0 
V 1 - k  0 0 0 
VI U ,  U T I +  c;lu2 0 0 0 

4. Spin Hamiltonians 

There is a well known connection between the solutions of the YBE and quantum 
Hamiltonians 
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If R ( u ,  U )  is a solution to (1.1) then 

and 

satisfy the commutation relation (1.4) and the matrix L can be used for the construction 
of transfer matrices commuting with the spin Hamiltonian (4.1). 

For solutions satisfying R ( u ,  U )  = Ro = P the Hamiltonian is given by Baxter's 
formula [ 113. However, there is no  such formula for solutions satisfying (3.1) and we 
have to use Sutherland's method for construction of the Hamiltonian. 

The sufficient condition for commutation of the transfer matrix (for details of the 
notation see [12]) 

N 
T( U )  = Tr fl Li(  U )  

i = l  
(4.4) 

and the Hamiltonian of the form (4.1) is the existence of a matrix Q such that 

[L,L,+l, Kl+J = LlQl+I - Q l L + l .  (4.5) 
For 

0 0 2  

O E b O  
d O O a '  

we can assume that the matrix Q is also of the eight-vertex form and  the Hamiltonian 
has the form 

N 

H = 1 [J,a:a:+, +J,c+pap+, +Jza:a:+l + hu:  
I = 1  

+ M (  c+:a;+ 1 - ~ r c + : + l )  + K ( ~ : c + i ;  1 + c+:+I)]. (4.7) 
From Sutherland's equation (4.5) we then get the following relations between the 

(4.8) 

elements of the matrix L and the coefficients of the Hamiltonian 

d [ (  a i -  ba')J, + iFM] = 0 

c [ (a6 -ba ' ) J z - iFM]=0  (4.9) 
d [ ( a 6 +  ba')J, - (F  +2cE)J] + c ( a b +  &) (T- iK)  = 0 

c[ a6 + ba')J, - ( F + 2dJ)JI + d (  a b  + a';)( + i K ) = 0 

( r - i K ) ( a + b - a" - 6') = 4 E h  

(4.10) 

(4.1 1) 

(4.12) 
where 

J,=J+r J , . = J - r  

and 

F = a;+ b6- cE- dd (4.13) 

plus the equations obtained from (4.8)-(4.12) by the transformation [a ,  b, c, d - 
a',6,E,d; K + - K ,  M+-M].  
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For the solutions from table 1 we get the following values of coefficients of the 

Solution I :  J ,  = J = h = K = 0 and r, M =arbitrary. 
Solution 11: J,  = K = 0, J : r : h = 2u : -i( 1 - U’) : (1 + U’) and M = arbitrary. 
Solution 111: J,  = 0, r = h = iK, and J, M =arbitrary. 
Solution IV: J,  = 0 and J, r, h, K ,  M = arbitrary. 
Solution V: K = r = 0, J,  = ( u2/2)(  1 + k ) ( J  + iM) ,  and J,  h, M = arbitrary. 
Solution VI: J,  = K = r = 0 and J, h, M = arbitrary. 
Here U and k are arbitrary constants. They are the parameters of the matrix L (see 

spin Hamiltonian (4.7). 

(4.6) and (4.2)). 

5. Conclusions 

We have found several solutions of the YBE depending in general on more than one 
variable. They are of the form (1.3) with the entries given in table 1. All but solution 
V are the free-fermion types. Each of the solutions represents a class of solutions 
obtained from a given one by the transformation (3.2) and by the transformation 
U’ =f( U), U’ =f( U) where f is an arbitrary function. 

The first two solutions are genuine eight-vertex ones. Solution I can be expressed 
as a function of the difference of variables and, therefore, it should have been included 
in the classification [6]. Moreover, it is a free-fermion type solution that cannot be 
parametrised in the Felderhof way [13] (cf [4]). Solution I1 can be obtained as the 
limit k = 1, t + m  of the solution (1.5). 

The other solutions are of the five-vertex and non-symmetric six-vertex types. 
Together with the constant solution R7 th_ey represent all possible solutions of their 
classes, i.e. cases (1.3) with d = d’ = E =  0, d = E =  0, d‘ = c = 0, d’ = E =  c = 0. Note that 
solutions I11 and IV depend on one variable only but not on the difference of variables 
as usually. 

The spin Hamiltonians corresponding to the newly found solutions are generalised 
X X Z  or X Y  models. Unfortunately, some of them are non-Hermitian. 
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